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Abstract

The generalized Hamming weights of linear codes were first introduced by

Wei, which are fundamental parameters related to the minimal overlap struc-

tures of the subcodes and very useful in several fields. It was found that the

chain condition of a linear code is convenient in studying the generalized Ham-

ming weights of the product codes. In this paper we consider a class of codes

defined over some varieties in projective spaces over finite fields, whose gener-

alized Hamming weights can be determined by studying the orbits of subspaces

of the projective spaces under the actions of classical groups over finite fields,

i.e., the symplectic groups, the unitary groups and orthogonall groups. We

gave the weight hierarchies and generalized weight spectra of the codes from

Hermitian varieties and prove that the codes satisfy the chain condition.
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1 Introduction

The generalized Hamming weights of a linear code were introduced by V. K. Wei [1].

Let IFq be a finite field, where q is a prime power. For any code D of block length n

over IFq, define the support )c(D) by

x(D) = {i tc i 5_ O forsome (cl,C2,. .. ,cn) E D},
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and the support weight w,(D) by,

w_(D) = Ix(D)I.

Let C be a linear [n, k] code over IFq. For any r, where 1 < r < k, the r-th generalized

Hamming weight of C is defined as

dr(C) = min{ ws(D){D is an r-dimensional subcode of C}.

Obviously, the minimum Hamming weight (minimum distance) of C is just dl(C).

The weight hierarchy of C is then defined to be the set of generalized Hamming

weights

{d,(C),

The following properties of the generalized Hamming weights are known for a

q-ary [n, k] code C.

(1) ( Monotonicity ) 1 G d,(C) < d2(C) < ... < dk(C) < n.

(2) ( Duality ) Let C ± be the dual code of C. Then

{dr(V±)[1 <_ r < n - k} = {1,2,...,n}\{n + l -dr(C){l _< r <k}.

Many applications of generalized Hamming weights are known. They are useful

in cryptography [1][2], in trellis coding [3][4], and in truncating a linear block code

[51,etc..

The support weight distribution for irreducible cyclic codes was introduced by

Helleseth, K16ve, and Mykkeltveit [10]. The generalized Hamming weights are actu-

ally the minimum support weights.

We say that a linear In, k] code C satisfies the chain condition, if there exist
r-dimensional subcode Dr of C for 1 < r < k such that

ws(Dr)=dr(C), r=l, 2,-.., k.

and

DIC D2C--'cDk.

The following proposition can be found in [11],

Proposition 1 If C satisfies the chain condition, so does its dual code C j'.

In this paper we consider a class of codes defined over some varieties in projective

spaces over finite fields, whose generalized Hamming weights can be determined by

studying the orbits of subspaces of the projective spaces under the actions of classical

groups over finite fields. We gave the weight hierarchies and generalized weight spectra

of the codes from Hermitian varieties and prove that the codes satisfy the chain

condition.
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2 The codes from varieties and classical groups

Now let us consider the finite field IFq2 with q2 elements, where q is a power of prime.

IF92 has an involutive automorphism

a _--+-_=a q.

The fixed field of this automorphism is IFq.

Let k = z_ + l, where t, > 0, I _> 0. The set of points t(xl,x2,...,xk) satisfying

x_+1 + 4 +l +-.-+ x_+l = 0

is a Hermitian variety in PG(k - 1, IFq2), when l = 0, it is a nondegenerate Hemi-

tian variety, and when 1 > 0, it is a degenerate Hermitian variety. We denote this

Hermitian variety by Ii,,O. Let n = ]I(,,tI] be the number of points lying on I(,,0 in

PG(k- 1,1Fq2). Then from [141, we have

(q_ --(--1,)u,)lqU-1 --(-1) "-' ) q2; + 9_- 1

q-1 q 71
q2,+2t-, + (_l),-,q,+2,-, + (_l),q,+2 _ 1.

q2 _ 1

1-/

(9)

For each point of I(,,0, choose a system of coordinates and regard it as a k-dimensional

column vector. Arrange these n column vectors in any order into k x n matrix, denote

it also by l(,,O. It can be proved that I(,,t) is of rank k. Hence I(,,0 can be regarded as

a generator matrix of a q2-ary projective [n, k]-code, which will be denoted by C(,,O.

Obviously,

Sc.i,.,o,,i.,,) = l(.,t).

When z, takes 1, 2, .-., we get a sequence of infinite linear [n,, k,] codes {C(,,t)},_=_.

Wan [8] is the first to use the theory of geometry of classical groups over finite fields

to study the generalized Hamming weights of the codes from varieties, he determined

the generalized Hamming weights of the codes from nondegenerate quadrics and prove

that the codes satisfies the chain condition. In [9] Wan and Wu determined the weight

hierarchies an generalized weight spectra of the codes from degenerate quadrics by

using the geometry orthogonal groups.

3 The weight hierarchies of the codes

We denote by IF_k) (resp. Pa(k- 1,1Fq) ) the k dimensional vector space (resp.

(k - 1) dimensional projective space) over IFq. A q-ary linear In, k] code C is called

a projective code if the columns of a generator matrix G of C can be regarded as

distinct points of PG(k - 1, IFg). So we have a point set in PG(k - 1, IFq), whose



elementsare the column vectorsof G, which will be denoted by $c,a and called the

point set arising from C via G. Different encoding matrices of C give rise to point

sets which are projectively equivalent.

Two projective [n, k] codes over IFq are said to be equivalent, if one can be obtained

from the other by permuting the coordinates of the codewords and multiplying them

by non-zero elements of lFq.

Let G be a generator matrix of a projective [n, k] code C and C' be a projective

code equivalent to C. Then the same transformation which transforms C to C' will

transform the encoding matrix G of C to an encoding matrix G' of C'. If G and G'

are encoding matrices of two equivalent projective [n, k] codes C and C', then SC,G

and $C,,a' are projectively equivalent.

Let G be a generator matrix of C, and for any column vector z C IF_k), let ma(x)

be the number of occurrences of the vector x as columns of G. Obviously, ws(C) =

n - ma(0(k)), where 0(k) is the zero vector of IF_k). Let U be a subspace of IF_k) and
define

me(U) =
xEU

If M is an r x k matrix of rank r, then MG generates a r-dimensional subcode of C,

and any r-dimensional subcode is obtained in this way. Let D be an r-dimensional

subcode of C and MG be a generator matrix of D, where 5I is an r x k matrix of

rank r. Define the dual of D to be

D ± = {x C IF_k)[ Mx = 0}, 1)

Then D ± is an (k - r)-dimensional subspace. From linear algebra we have

Lemmal ([12]): For anyr, where l <_ r <_ k the map D _-+ D ± defined by (1) _s a

bijection from the set oft-dimensional subcodes of C to the set of (k- r)-dimensional

subspaces of IF_k). []

Lemma 2 ([12]): Let D be a subcode of C. Then

ws(D) = n - rna(D ±).

Proof'. Let MG be a generator matrix of D. Then w,(D) = n - m/a(0 (k)) =

n- E ma(x)= n-ma(D ±). []
xED ±

Lemma 3 ([IO_): Let C be a q-ary projective [n, k] code, G be a generator matrix

of C, and Sc,G be the point set in PG(k - 1, lFq) arising from C via G. For any r,

where 1 <_ r <_ k, let D_ be an r-dimensional subcode, then there is an (k - r - 1)-flat

of PG(k - 1,1Fq), Pk-_-,, such that

ws( D_ ) = n - IPk___l A Sc,a],
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and

dr(C) = n - max{IPk-r-, _Sc,al},

where&-r-, ru_s throughall (_ - r - 1)-flats of Pa(k - 1,_q).

Pro@ It follows from Lemmas 1, and 2. Specializing Lemma of [13] to any' q-dry

projective [n, k] code C we can also obtain the second assert of the theorem. []

4 The chain condition of the codes from Hermitian

varieties

Let P be an m-dimensional vector subspace of nz'(k) then there is a m x k matrix,
*atq2 _

such that its row vectors is a basis of P, we call the matrix a matrix representation of

P. An m-dimensional vector subspace of IF (k) is also called a (projective) (m - 1 )-flat
q2

of PG(k - 1, IFq2). If no ambiguity arises, we denote all of them by P.

Two n x n matrices A and B over IFq2 are said to be cogredient, if there is an n × n

nonsingular matrix Q such that QA tA = B. Let P be an m-dimensional subspace

of IF(qk_I. P and its corresponding (m- 1)-flat are said to be type (re, s)if tPI(,,0P is

cogredient to

(I(_) 0 (m-*))

where I O) is the s x s unit matrix, and 0 (_-_) is the (m - s) x (m - s) matrix whose

entries are all O. Let E be the subspace of IF ("+0 generated by e_+l "-- e,+l, where
q2 ,

ei is the length u + l vector, whose i-th position is 1, and other positions are all O.

An m-dimensional subspace P or an (m - 1)-flat P is said to be type (m, s, t) if

(1) P is of type (re, s) and

(2) dim(PC? E)=t.

The following results will be used in the sequel and can be found in [14].

Lemma 4 In PG(k- 1,IFq2), there exist flats of type (m,s,t) if and only if

t_<l and 2s<2(m-t)<u+s. (3)

[]

Lemma 5 In PG(k - 1, lFq2), there exist flats of type (m, s) if and only if

2m--1/--s

max{0, 2 } -< min{/,m- s}. (4)

[]
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Lemma 6 Let m k 1 and P be an (m - 1)-flat of type (m,s,t) or of type (re,s).

Then
q2m-i + (__l)Sq2m-s + (__l)S-lq2m-s-' __ 1

[P a I(,,,01 = q2 _ 1

[]

The generalized Hamming weights of C(_,t) are determined in [12].

Theorem 1 ([i2]): The generalized Hamming weights of the q2-ary projective [n,k]

code C(,,t ) is as follows.

1) When u is even,

q2U+2/-1 _ q2(,+/-r)-i

q2 _ 1
dr(C(u,l) = q2,+t-1 q_+2l-_ + qU+2l _ q2(_+/-r)

q2 _ 1

for r = 1,2,-.-,u/2,

for r = u/2,...,u+l.

2) When u _s odd

q2_+21-1 _ q,+21 _ q2(_+t-r)-_ + q_+2_-2

q2 _ 1
d_(Co,,t)) = q2_+l-1 qV+21-1 -t- q_,+2l q2(_+/-_)

q2 _ 1

for r = 1,--., (v' -- 1)/2,

for r = (u + 1)/2,...,u + I.

[]

Corollary 1

Wei bound.

([12]): Let u be even and r <_ u. Then dr(C(_,l)) meets the Griesmer-
[]

Corollary 2 The sequence of infinite linear codes {C(u,l)}uC_=l has a nonzero asymp-

totically relative minimum distance.

Proof." Consider l = 0. Let n, and d, be the code length and minimum distance of

C_ respectively, we have

q2_,-1 _ qU-1 + q. _ 1 q2U-3,nu = 2 , and du =
q -1

SO_
d, q2 _ 1

5. -- n_ _ q_ > O, (u ---4 oc).

[]

Theorem 2 For any u and l, codes C(.,t) satisfy the chain condition.



Proof: Let P be an (m - 1)-flat of type (m,s,t), where m = k- r = u +l - r. Then

qZm-1 + (_l)Sq2m-s + (__l)S-Xq2m-_-I __ 1 __ q2(,+Z-r)-I __ 1

[PDI(_,;)] = q2__ 1 -- q2__ 1
t_q2("+/-r) -

q+l
1(l) s"

q

In PG(k - 1, IFq2), there exist (m - 1)-flats of type (m, s, t) if and only if

2s<2(m-t)<_u+s,

asm=u+l-r,

2s < 2(u+/-r-t) <_ u+s.

If u is even. We consider the following two cases.

(1) When 2r _< u, i.e., r = 1,2,.-., 2' from (5), we have

(5)

s>_u-2r+2(l-t).

Let t = l, (5) becomes u-2r <_ s <_ u-r, so when Pk-r-1 runs through all (k-r-1)-

fiats, max{lPk___, n I(_,0l} is achieved by (u+/-r- 1)-flats of type (u+l-r,u-2r, l).

Let P,+t-2 be an (u + l - 2)-flat of type (u + l - 1, u - 2, l), then

dl(C(u,l)) = ?-i -IPu+l_2 ["1 I(.,01-

Let P,+t-3 be an (u + 1 - 3)-fiat of type (u + l - 2, u - 4, 1), then

d:(C(.,o) = n

And obviously we can assume that P,+l-3 C P,+;-2- Proceeding in this way, we find a

chain of flats P.+t-4 of type (u+l-4, u-6,1),..., P_,+_-i-_ of type (u+l-i,u-2i,l),

withi = 3,4,.-., 7,

di(C(,,O ) = n - IP,+l_i_l n I(.,;)l,

and P_+I-1 C P_+t C "-- C P.+l-3 C P,+t-2.
1* b,

(2) When 2r > u,i.e.,r = 7+l,...,u+l, when -_+l-r <_ t <_ u+l-r, wecan

take s = O, and when Pk-_-, runs through all (k- r- 1)-flats, max{IPk___, n

is achieved by (k - r - 1)-flats of type (u + 1 - r, O, t). Let P_+z-2 be an (._ + l - 1, O, t)

fiat, where l - 1 _< t _< _ -t- I - 1, then

d_+l(C(u,l)) = n -- IP_+t-2 n I(_,t)l.

And obviously we can assume P_+t-2 C P_+l-1. Proceeding in this way, we can find
a chain of fats

P-1 C P0 C ... C P_+l-2 C P_+t-_.

Combine (1) and (2), we get a chain of fiats

P-1 C Po C ... C P_+t-2 C P_+_-I C -.. C P_,+t-2,



where Pv+l-i-1 is a (v+l-i- 1)-flat of type (v+l-i,v-2i, I), when i = 1,2,.--, _;

P,+t-,-i is a (v + l - i -1)-flat of type (v + l- i, O,t), where _ + l - i < t < v + l - i,

Vwhen i = 7 + 1,--. ,v+ / - 1, respectively, and P-1 = 0, such that

di(C(_,O ) = n -[Pu+l-i-1 A

fori= 1,2,-..,v+l. Let

xk) yk) = O,Mi
= PJ-v+l-i-1 = {(xl,''',xk) E 'a- q2 I (Yl,''',Yk) e Pu+l-i-1 )"

Then Mi is an /-dimensional subspaee of IF(q_), and

M1 C M2 C "'" C Alv+l = g_,(k)
u q2 •

Denote also by Mi a matrix representation of the/-dimensional subspace Mz of IF(q_),

and let

Di = M,G,

where G is the generator matrix of code C(,3). Then Di is an i-dimensionl subcode

of C(_,t) and by lemmas 2 and 3,

ws( Di) = n - IP,,+t_i_l r-1

So we have a chain of subcodes

such that

D1 C D2 C "'" C D,+l = C(_,t),

for/ = 1,2,.-.,v+ l.

odd, the proof is simlar, we omit the details.

ws( Di) = di(C(_,t)),

So when v is even, C(.,t) satisfies the chain condition. If v is
[]

Theorem 3 For any v and l, the dual codes C_3 ) satisfy the chain condition.

Proof." It is a corollary of Theorem 2 and Theorem 5 of [11]. []

5 Conclusions

It is a challenging problem to determine the complete weight hierarchies of linear

codes. Even for some classical codes, such as BCH codes, generalized Reed-Muller

codes, etc., this problem is still unsolved. The chain condition is very useful in

the study of weight hierarchies of product codes. We have proved that the codes

from Hermitian varieties and their dual codes satisfy the chain condition. It is very

interesting to study the weight hierarchies of some product codes by the codes from

Hermitian varieties or their dual codes and other linear codes.
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